

VOLUME 20(4), 2021 513

Date of publication DEC-31, 2021, date of current version OCT-06, 2021.

www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209

Online ISSN 2312-5381

DOI 10.47839/ijc.20.4.2438

Architecture and Model of Neural

Network Based Service for Choice of the

Penetration Testing Tools

ARTEM TETSKYI1, VYACHESLAV KHARCHENKO1, DMYTRO UZUN1, ARTEM NECHAUSOV2
1Department of Computer Systems, Networks and Cybersecurity, National Aerospace University KhAI,

Chkalova str., 17, 61070, Kharkov, Ukraine, {a.tetskiy, v.kharchenko, d.uzun}@csn.khai.edu, https://csn.khai.edu
2Department of Geo-information Technologies and Earth Monitoring, National Aerospace University KhAI,

Chkalova str., 17, 61070, Kharkov, Ukraine, a.nechausov@khai.edu, http://www.khai-gis.info

Corresponding author: Artem Tetskyi (e-mail: a.tetskiy@csn.khai.edu).

This research is supported by the project STARC (Methodology of SusTAinable Development and InfoRmation Technologies of Green

Computing and Communication) funded by the Ministry of Education and Science of Ukraine.

 ABSTRACT During penetration testing of web applications, different tools are actively used to relieve the tester

from repeating monotonous operations. The difficulty of the choice is in the fact that there are tools with similar

functionality, and it is hard to define which tool is best to choose for a particular case. In this paper, a solution of

the problem with making a choice by creating a Web service that will use a neural network on the server side is

proposed. The neural network is trained on data obtained from experts in the field of penetration testing. A trained

neural network will be able to select tools in accordance with specified requirements. Examples of the operation

of a neural network trained on a small sample of data are shown. The effect of the number of neural network

learning epochs on the results of work is shown. An example of input data is given, in which the neural network

could not select the tool due to insufficient data for training. The advantages of the method shown are the simplicity

of implementation (the number of lines of code is used as a metric) and the possibility of using opinions about

tools from various experts. The disadvantages include the search for data for training, the need for experimental

selection of the parameters of the neural network and the possibility of situations where the neural network will

not be able to select tool that meets the specified requirements.

 KEYWORDS neural network; web service; cybersecurity; penetration testing; web applications; tools.

I. INTRODUCTION

ENETRATION testing is one of the ways to find Web

application security problems [1]. While conducting

such testing, tools intended to automate monotonic processes

are actively used [2]. The problem is that for testing certain

classes of Web application security problems, tools with

similar functionality are used, and it is not known which tool

is better to choose for a particular case. Usually, this is a

problem of inexperienced testers who do not know the

features of similar tools. Experienced testers usually have

sets of tools that contain the most suitable tools for

themselves. As a rule, one can choose the most suitable tool

only empirically, that is, it is necessary to apply various

means in certain conditions, analyze the results and draw

appropriate conclusions.

Such comparative experiments are labor-intensive due to

the large number of existing tools and a wide range of

possible conditions of use. One of the methods of such

comparison is the use of various tools on sites with

previously known vulnerabilities [3]. The analysis of the

several tools work results on such platform was given in [4].

It was found that the vulnerabilities of the Web application

logic were not detected by any of the tools considered. This

leads to the fact that the tools cannot do all the work for the

tester and detect all the vulnerabilities.

A solution to the problem of choosing tools using a neural

network is proposed in this paper. This method will allow the

use of expert opinions about the feasibility of using various

P

 Artem Tetskyi et al. / International Journal of Computing, 20(4) 2021, 513-518

514 VOLUME 20(4), 2021

tools as training data. The use of neural network models for

solving such problems is analyzed in [5, 6]. Conclusions that

can be made are that various types of neural network

architectures can be used to solve classification problems.

The most suitable architectures can be determined

experimentally.

It is worth noting that artificial intelligence is already

actively used in solving other problems related to the area of

cybersecurity. In paper [7] a deep neural network based

malware detection system was described. Authors of the

paper [8] conducted an experiment to identify the unknown

or zero-day malware, as a result of which malware was

detected with high accuracy rate. Intrusion

detection/prevention systems [9] may also use the neural

network approach, as shown in [10].

Hence, there is a problem of choice of penetration tools

for Web applications considering their features and

requirements to cybersecurity. Besides, it should be taken

into account that a set of tools is increased and tool

characteristics are changed.

The goal of the paper is to describe the process of creating

a neural network based Web service for choosing tools of

penetration testing of Web applications. This paper is based

on [11], in which prerequisites for creating a Web service for

choosing penetration tools were described. Also, it discusses

issues related to the implementation of neural network logic

on the Web server side.

II. WEB SERVICE ARCHITECTURE

Fig. 1 shows the architecture of a Web service for choosing

penetration testing tools. Software stack Linux + Apache + MySQL

+ PHP is used. Fast Artificial Neural Network (FANN) [12] is a

library for creating neural networks. All technologies are free and

often used to create Web applications.

Figure 1. The structure of the neural network

The main part of the site is available to all users. By

marking the criteria for the search, users form a vector of

input data that is transmitted to the server. The neural

network searches for tools that match the specified criteria,

then a list of tools that, according to the neural network,

correspond to the search query, is displayed to the user.

The control panel is a closed part of the site and is

accessible only for the service administrator. The main

functions of the control panel are as follows:

– Tool management. In the system there is a list of tools

compiled on the basis of expert's opinions. With this feature,

new tools can be added and existing ones can be edited or

deleted.

– Criteria management. Each tool has a certain set of

criteria. The total set of criteria is being edited by using this

function.

– Management of opinions. One opinion consists of a set

of criteria values of a tool. Using this function, administrator

adds to the system the opinions about the tools received from

the experts.

– Training neural network. After making changes to the

list of opinions, the neural network should be retrained on

actual data.

This functionality is due to the fact that the number of

tools is growing, existing tools are updated, getting new

functionality. The administrator must be in constant

interaction with experts to provide a Web service with up-to-

date information, adding it to the system as it becomes

available.

All information about the tools is stored in a database.

When training a neural network, data are being selected from

the database, transformed into training data and, thus, the

neural network is trained. The trained neural network is

stored in a file; this is due to the functionality of the FANN

library. If the retraining of the neural network is too resource-

intensive, then it can be carried out in the hours of the least

activity of the Web service so that the retraining does not

affect the ability of the Web service to function.

III. BASELINE DATA FOR BUILDING A NEURAL

NETWORK

The initial data for training the neural network, as already

noted, are the opinions of experts in the field of testing

security of Web applications about the tools that are used in

penetration testing. These data are presented in the form of a

table, where the rows are the criteria taken into account for

tools selection process, and the columns are the tools

themselves. An example of such data is shown in Table 1.

The presented dataset is taken from [13], in which authors

compared known scanners. Three scanners were numbered

as T1, T2, and T3.

Table 1. Criteria table example

Criteria T1 T2 T3

Server Side Java Script
injection

1 0 0

Reflected Cross Site Scripting 1 1 1

Persistent Cross Site

Scripting
1 1 1

DOM Cross Site Scripting 1 1 1

JSON Hijacking 0 1 0

Server-Side Includes

Injection
0 1 1

Format String Attack 0 1 1

Code Injection 1 1 0

XML Injection 0 1 0

Artem Tetskyi et al. / International Journal of Computing, 20(4) 2021, 513-518

VOLUME 20(4), 2021 515

Forceful Browsing /

Authentication Bypass
1 1 1

Privilege Escalation 0 1 0

Xml External Entity 1 1 0

Weak Session Identifier 0 1 1

Session Fixation 1 1 0

Cross Site Request Forgery 1 1 1

Traditionally, the structure of a neural network is defined,

depending on the type of the problem being solved, and the

set of training data can vary, which entails only a change in

synaptic weights [14]. In this case, the structure of a neural

network depends on a set of training data, since the number

of input neurons is equal to the number of criteria, and the

number of output neurons is equal to the number of tools that

are available in the system.

IV. THE SEQUENCE OF CREATING A NEURAL

NETWORK

Consider the process of creating a neural network using the

training data from Table 1. It is proposed to use a structure

with two hidden layers of neurons, which will allow

identifying more complex dependencies than in the case of

one hidden layer [15]. Such a decision may seem

unreasonable, but it must be taken into account that in the

practical application of the service, the number of tools can

reach up to 100, the number of criteria is not known in

advance. The possible number of tools in the system is

justified by information about tools from the source [16],

which currently contains a list of 43 tools that are often used

to troubleshoot Web application security problems. The

amount of training data presented in this work is not

sufficient for the quality training of the neural network. It is

impossible to determine how much data is needed to properly

train a neural network; this is a separate topic for discussion

and experimentation [17]. The data are shown to demonstrate

the possibilities of using a neural network to solve the

problem of choosing penetration testing tools.

There are no restrictions on the number of neurons in

hidden layers; there are rules that can be followed when

creating a neural network structure. One of these rules is the

“geometric pyramid” rule [18], according to which the

number of neurons in hidden layers is determined as follows:

= 3
n

r
m

, (1)

= 2

1k mr , (2)

=2k mr , (3)

where n – the number of input neurons, m – the number of

output neurons, 1k – the number of neurons in first hidden

layer, 2k – the number of neurons in second hidden layer.

By applying the formulas (1)-(3) to calculate the number

of neurons in hidden layers, the parameters of the neural

network are the following:

– the number of input neurons n – 15 (corresponds to

the number of tools criteria);

– the number of output neurons m – 3 (corresponds to

the number of tools);

– the number of hidden layers – 2;

– the number of neurons in hidden layers 1k and 2k – 9

and 6 accordingly.

A graphical representation of the neural network

structure is shown in Figure 2. In this case, the network is

fully connected, i.e., sparseness coefficient is one.

Figure 2. The structure of the neural network

One of the characteristics of the neural network is the

activation function [19]. In this case, the sigmoid activation

function is used, since it is often used in solving

classification problems and has an output value in the range

from zero to one.

V. TRAINING AND TESTING THE NEURAL NETWORK

The neural network is trained using the error propagation

reverse method. In this paper, the Resilient Propagation

(Rprop) algorithm is used, which is adaptive and does not

require the denotation of training speed [20]. When learning,

the number of learning epochs or the acceptable error value

and the maximum number of learning epochs can be

indicated if the value of the acceptable error was not reached

in the learning process. As a rule, these parameters can only

be determined experimentally.

The untrained network produces unstable results due to

the initialization of synaptic weights with random values. If

an increase in the number of epochs of learning does not lead

to the required results, then, most likely, the reason of this is

an insufficient amount of data for learning.

Let us transform values from Table 1 into training

examples of a neural network. The result of the conversion

is shown in Table 2. At the moment, one tool is characterized

by one set of input data, since in each output data there is

only one “1” in the corresponding position.

 Artem Tetskyi et al. / International Journal of Computing, 20(4) 2021, 513-518

516 VOLUME 20(4), 2021

Table 2. Data for training

№ Input data Output data

1 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1 1, 0, 0

2 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 0, 1, 0

3 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1 0, 0, 1

The neural network is tested using three examples, shown

in Table 3.

Table 3. Test cases

№ Input data Expected

output data

1 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1 1, 0, 0

2 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1, 0, 0

3 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1, 1, 1

In the first example, the input data matches one of the

training examples, so the neural network should only select

the first tool. In the second example, the neural network

should select only the first tool, since the criteria

corresponding to the first position of the input vector, which

is present only in the first tool. The third example illustrates

the search by the criterion that is present in all three tools.

To select the number of learning epochs, several training

cycles and network testing will be conducted, increasing

each time the number of learning epochs. The results

obtained at 5000 epochs of learning are shown in Table 4.

The higher the output value is, the higher the confidence of

the neural network in the correct choice. As a rule, in

practice, some limit value is used, for example, 0.8 or 0.9. If

the output value is greater than the boundary value, then it is

considered that the choice of a neural network can be trusted.

For this particular case, the boundary value of 0.9 will be

used.

Table 4. The results of work with 5000 epochs of study

Launch

number

Sample

number
Result

1

1 0.9938, 0.0000, 0.0055

2 0.7782, 0.0001, 0.0873

3 0.0519, 0.0054, 0.7701

2

1 0.9927, 0.0000, 0.0062

2 0.7566, 0.0006, 0.0383

3 0.0438, 0.0187, 0.5787

3

1 0.9922, 0.0062, 0.0000

2 0.2827, 0.0179, 0.0254

3 0.0046, 0.0475, 0.8524

In the first example, in all three launches the neural

network made the right choice of tool (the first tool was

chosen). In the second example, the highest output values

also corresponded to the first tool, however, these values

were not close to 1. In the third run of the second example,

the minimum output value of 0.2827 was found, which

indicates an insufficient number of learning epochs. In all

launches of the third example, there is a tendency to choose

the third tool, but the output values are not close to 1, i.e., do

not exceed the boundary value.

The number of learning epochs was increased to 50000,

the test results are shown in Table 5.

Table 5. The results of work with 50000

epochs of study

Launch

number

Sample

number
Result

1

1 0.9974, 0.0025, 0.0007

2 0.9965, 0.0025, 0.0008

3 0.8146, 0.0060, 0.0071

2

1 0.9985, 0.0013, 0.0009

2 0.9585, 0.0060, 0.0032

3 0.0523, 0.0244, 0.0690

3

1 0.9992, 0.0000, 0.0006

2 0.9436, 0.0000, 0.0077

3 0.0287, 0.0022, 0.6091

In all the tests of the first and second examples, it is clear

that the result is stable and exceeds the boundary value. In

the third example, the result remains unstable. Let us

increase the number of learning epochs to 500000, the test

results are shown in Table 6.

Table 6. The results of work with 500000

epochs of study

Launch

number

Sample

number
Result

1

1 0.9999, 0.0000, 0.0000

2 0.9934, 0.0017, 0.0000

3 0.0160, 0.1621, 0.0052

2

1 0.9999, 0.0001, 0.0000

2 0.9181, 0.0000, 0.4310

3 0.0003, 0.0002, 0.9991

3

1 0.9999, 0.0001, 0.0001

2 0.9941, 0.0009, 0.0004

3 0.0137, 0.0116, 0.0936

The first and second examples work stably, the third

example continues to produce unstable results. Hence, the

conclusion can be drawn that an increase of the number of

learning epochs cannot solve the problem of the instability

of work results. With the current training data set, the neural

network cannot produce a stable result for the input data

from the third example. It is necessary to expand the training

examples number.

VI. FURTHER TRAINING OF THE NEURAL NETWORK

Let us assume that a new expert opinion has appeared about

the second tool. The expert indicated the criteria inherent to

this tool. A new training example is shown in Table 7.

Table 7. New training example

Input data Output data

0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 0, 1, 0

Let us train the network taking into account the new

example and see how the result of the neural network

operation will change in the third example. The number of

Artem Tetskyi et al. / International Journal of Computing, 20(4) 2021, 513-518

VOLUME 20(4), 2021 517

learning epochs is 500000, the test results are given in Table

8.

Due to the added training example, the neural network

began to produce a stable result in the third test example.

This can be explained by the fact that the second tool has 2

expert opinions about the availability of the required criteria,

and the first and third tools have one expert opinion. In equal

conditions it was impossible to determine which of the tools

meets the specified requirements.

Table 8. The results of work with 500000 epochs of

learning with the new training example

Launch

number

Sample

number
Result

1

1 0.9997, 0.0001, 0.0003

2 0.9994, 0.0001, 0.0003

3 0.0000, 0.9987, 0.0005

2

1 0.9997, 0.0001, 0.0003

2 0.9997, 0.0001, 0.0003

3 0.0000, 0.9973, 0.0001

3

1 0.9997, 0.0001, 0.0003

2 0.9996, 0.0002, 0.0003

3 0.0003, 0.9971, 0.0000

Examples given above show that increasing the quantity

of learning epochs does not always lead to stable results.

Overfitting of the neural network may also occur and it will

entail the loss of network generalization possibility.

In practice, a large number of training examples are used

to train a neural network. Cross-validation is used to evaluate

the operation of a neural network on data that are not in the

training set. During cross-validation, a lot of training data is

divided into k identical blocks, at each iteration one of k

blocks remains for model testing and k-1 blocks are used as

training data [21]. The process is repeated k times, and each

of the blocks is used once as a test set. The obtained data are

combined to calculate an overall score.

VII. CONCLUSION

In this paper, the possibilities of using neural networks when

choosing tools for penetration testing of Web applications

are shown. The results of the neural network and their

dependence on learning parameters are shown. The

described mechanism is used on the Web server side and the

FANN library is also used. The application of neural

networks allows the use of expert opinions when choosing

testing tools.

The advantage of using neural networks is the simplicity

of implementation in comparison with deterministic

algorithms; the number of lines of code is used as metrics

parameter. The opinions of various experts are taken for

training, thus avoiding the subjectivity of opinions. There

may be a situation where some opinions will be

contradictory. In such circumstances, the neural network

may not select a tool that meets the search requirements. The

disadvantages include the need for experimental selection of

neural network parameters. It is also difficult to find data for

training due to the high requirements for experts who provide

training data for the neural network.

Further research may be related to the accumulation and

processing of information from experts as the set of analyzed

tools expands. In addition, cases should be investigated when

a neural network makes a decision that this set of tools does

not allow them to be selected according to specified criteria.

References
[1] M. Vieira, N. Antunes and H. Madeira, “Using web security scanners

to detect vulnerabilities in web services,” in Proceedings of the 2009

IEEE/IFIP International Conference on Dependable Systems &

Networks, Lisbon, Portugal, June 29 - July 2, 2009, pp. 566-571.
https://doi.org/10.1109/DSN.2009.5270294.

[2] N. Awang and A. Manaf, “Detecting vulnerabilities in web

applications using automated black box and manual penetration
testing,” in Proceedings of the International Conference on Advances

in Security of Information and Communication Networks

SecNet’2013, Cairo, Egypt, September 3-5, 2013, pp. 230-239.
https://doi.org/10.1007/978-3-642-40597-6_20.

[3] F. R. Muñoz, I. I. S. Cortes and L. J. G. Villalba, “Enlargement of

vulnerable web applications for testing,” The Journal of
Supercomputing, vol. 74, issue 12, pp. 6598-6617, 2018.

https://doi.org/10.1007/s11227-017-1981-2.

[4] A. Doupé, M. Cova and G. Vigna, “Why Johnny can’t pentest: An
analysis of black-box web vulnerability scanners,” in Proceedings of

the International Conference on Detection of Intrusions and Malware,

and Vulnerability Assessment DIMVA’2010, Bonn, Germany, July 8-
9, 2010, pp. 111-131. https://doi.org/10.1007/978-3-642-14215-4_7.

[5] M. C. Nicoletti, J. R. Bertini Jr., D. Elizondo, L. Franco and J. M.

Jerez, “Constructive neural network algorithms for feedforward
architectures suitable for classification tasks,” in: L. Franco, D. A.

Elizondo, J. M. Jerez (Eds.), Constructive Neural Networks, Berlin,

Heidelberg, 2010, pp. 1-23. https://doi.org/10.1007/978-3-642-04512-
7_1.

[6] R. Sadeghian and M. R. Sadeghian, “A decision support system based
on artificial neural network and fuzzy analytic network process for

selection of machine tools in a flexible manufacturing system,”

International Journal of Advanced Manufacturing Technology, vol.
82, issue 9-12, pp. 1795-1803, 2016. https://doi.org/10.1007/s00170-

015-7440-4.

[7] J. Saxe and K. Berlin, “Deep neural network based malware detection
using two dimensional binary program features,” in Proceedings of the

2015 10th International Conference on Malicious and Unwanted

Software (MALWARE), Fajardo, Puerto Rico, October 20-22, 2015,
pp. 11-20. https://doi.org/10.1109/MALWARE.2015.7413680.

[8] M. Alazab, S. Venkatraman, S. Watters and M. Alazab, “Zero-day

malware detection based on supervised learning algorithms of API call
signatures,” in Proceedings of the Ninth Australasian Data Mining

Conference, vol. 121, Ballarat, Australia, December 1-2, 2011, pp.

171-182.
[9] A. S. Ashoor and S. Gore, “Difference between intrusion detection

system (IDS) and intrusion prevention system (IPS),” in Proceedings

of the International Conference on Network Security and Applications,
Chennai, India, July 15-17, 2011, pp. 497-501.

https://doi.org/10.1007/978-3-642-22540-6_48.

[10] S. S. Roy, A. Mallik, R. Gulati, M. S. Obaidat and P. V. Krishna, “A
deep learning based artificial neural network approach for intrusion

detection,” in Proceedings of the International Conference on

Mathematics and Computing, Haldia, India, January 17-21, 2017, pp.
44-53. https://doi.org/10.1007/978-981-10-4642-1_5.

[11] A. Tetskyi, V. Kharchenko and D. Uzun, “Neural networks based

choice of tools for penetration testing of web applications,” in
Proceedings of the 2018 IEEE 9th International Conference on

Dependable Systems, Services and Technologies (DESSERT’2018),

Kyiv, Ukraine, May 24-27, 2018, pp. 402-405.
https://doi.org/10.1109/DESSERT.2018.8409167.

[12] S. Nissen and E. Nemerson, Fast Artificial Neural Network Library

(FANN), [Online]. Available at:
http://leenissen.dk/fann/html/files/fann-h.html

https://doi.org/10.1109/DSN.2009.5270294
https://doi.org/10.1007/978-3-642-40597-6_20
https://doi.org/10.1007/s11227-017-1981-2
https://doi.org/10.1007/978-3-642-14215-4_7
https://doi.org/10.1007/978-3-642-04512-7_1
https://doi.org/10.1007/978-3-642-04512-7_1
https://doi.org/10.1007/s00170-015-7440-4
https://doi.org/10.1007/s00170-015-7440-4
https://doi.org/10.1109/MALWARE.2015.7413680
https://doi.org/10.1007/978-3-642-22540-6_48
https://doi.org/10.1007/978-981-10-4642-1_5
https://doi.org/10.1109/DESSERT.2018.8409167

 Artem Tetskyi et al. / International Journal of Computing, 20(4) 2021, 513-518

518 VOLUME 20(4), 2021

[13] M. Mirjalili, A. Nowroozi and M. Alidoosti, “A survey on web

penetration test,” Advances in Computer Science: An International

Journal, Los Alamitos, CA, vol. 3, issue 6, no. 12, pp. 107-121, 2014.
[14] J. E. Dayhoff and J. M. DeLeo, “Artificial neural networks: opening

the black box,” Cancer: Interdisciplinary International Journal of the

American Cancer Society, vol. 91, no. S8, pp. 1615-1635, 2001.
https://doi.org/10.1002/1097-0142(20010415)91:8+<1615::AID-

CNCR1175>3.0.CO;2-L.

[15] C. Y. Chen, J. R. C. Hsu and C. W. Chen, “Fuzzy logic derivation of
neural network models with time delays in subsystems,” International

Journal on Artificial Intelligence Tools, vol. 14, no. 6, pp. 967-974,

2005. https://doi.org/10.1142/S021821300500248X.
[16] Kali Linux Tools Listing, 2019, [Online]. Available at:

https://tools.kali.org/tools-listing

[17] H. Park and S. Baek, “An empirical validation of a neural network
model for software effort estimation,” Expert Systems with

Applications: An International Journal, vol. 35, issue 3, pp. 929-937,

2008. https://doi.org/10.1016/j.eswa.2007.08.001.
[18] T. Masters, Practical Neural Network Recipes in C++, Morgan

Kaufmann, 1993, 493 p. https://doi.org/10.1016/B978-0-08-051433-

8.50017-3.
[19] X. Glorot and Y. Bengio, “Understanding the difficulty of training

deep feedforward neural networks,” in Proceedings of the Thirteenth

International Conference on Artificial Intelligence and Statistics,
Sardinia, Italy, May 13-15, 2010, pp. 249-256.

[20] C. Igel and M. Hüsken, Improving the Rprop Learning Algorithm, in:

H. Bothe, R. Rojas (Eds.), Proceedings of the Second International
ICSC Symposium on Neural Computation (NC 2000), vol. 2000, ICSC

Academic Press, 2000, pp. 115-121.

[21] R. Setiono, “Feedforward neural network construction using cross
validation,” Neural Computation, vol. 13, no. 12, pp. 2865-2877,

2001. https://doi.org/10.1162/089976601317098565.

Artem Tetskyi, graduated National

Aerospace University “KhAI” with a

master's degree in Computer Systems

and Networks. Now he works as an

Assistant Lecturer of Computer

Systems, Networks and Cybersecurity

Department of National Aerospace

University. Research interests:

information technologies, Web

development, cybersecurity, fuzzy

logic.

Prof. Vyacheslav Kharchenko is a

head of Computer Systems, Networks

and Cybersecurity department at

National Aerospace University

“KhAI”. Research interests:

dependable computing, safety and

security critical software and FPGA

based systems modeling; software

reliability assessment and prediction

using SRGMs and big data analysis;

green information technologies; fault

and intrusion tolerant embedded

systems and IoT.

Dr. Dmytro Uzun, Associate Professor

of Computer Systems, Networks and

Cybersecurity Department of National

Aerospace University “KhAI”. His

experience includes information

systems maintenance, system

administration, development for new

information system, hardware and

software assessment and selection,

technical expertise, research in the

field of disk less technologies and

open source software technologies.

Ph.D., Artem Nechausov, received his

master’s degree with honours,

qualification level of geo-informatics

engineer in 2013 and PhD degree in

Information Technologies from

National Aerospace University "KhAI"

in 2016. Now he works as an Associate

Professor of the Department of Geo-

information Technologies and Earth

Monitoring at the Faculty of Rocket

and Space Technology in National

Aerospace University "KhAI”. Ukraine. Research interests:

Information technologies, GIS Analysis, geomarketing, gravity

models, Web development, fuzzy logic, aerospace monitoring.

https://doi.org/10.1002/1097-0142(20010415)91:8+%3c1615::AID-CNCR1175%3e3.0.CO;2-L
https://doi.org/10.1002/1097-0142(20010415)91:8+%3c1615::AID-CNCR1175%3e3.0.CO;2-L
https://doi.org/10.1142/S021821300500248X
https://doi.org/10.1016/j.eswa.2007.08.001
https://doi.org/10.1016/B978-0-08-051433-8.50017-3
https://doi.org/10.1016/B978-0-08-051433-8.50017-3
https://doi.org/10.1162/089976601317098565

